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Abstract. An effective field theory is derived that describes the low-frequency spin dynamics in the low-
temperature orthorhombic phase of La2CuO4. Restricted to a single CuO2 layer the effective theory is
a simple generalization of the relativistic nonlinear σ model to include all spin interactions allowed by
symmetry. Incorporating a weak interlayer interaction leads to two coupled nonlinear σ models which
provide an efficient description of the complete bilayer dynamics. Particular attention is paid to the weak-
ferromagnetic and spin-flop transitions induced by external magnetic fields. The main features of the
observed (covert) weak ferromagnetism are thus accounted for in a straightforward manner but some of
the finer theoretical predictions would require further experimental investigation. The derived framework
is also suitable for the study of the structure and dynamics of magnetic domains in undoped La2CuO4.

PACS. 75.10.-b General theory and models of magnetic ordering – 74.72.Dn. La-based cuprates

1 Introduction

The magnetic properties of La2CuO4 have been exten-
sively studied during the last decade [1]. This system is ap-
proximately described by a two-dimensional (2D) isotropic
Heisenberg antiferromagnet. However the orthorhombic
distortion of the crystal that takes place below 530 K in-
duces anisotropic spin couplings, the most important of
which is a Dzyaloshinskii-Moriya (DM) anisotropy [2,3]
that should lead to spin canting and thus weak ferromag-
netism. But a small antiferromagnetic interlayer coupling
forces successive CuO2 layers to cant in opposite direc-
tion and the induced weak moments average to zero in
the absence of external fields. Nevertheless the experimen-
tal as well as theoretical work of Thio et al. [4–6] estab-
lished that La2CuO4 is indeed a covert weak ferromagnet.
The derived phenomenological picture was further probed
by symmetry analysis [7,8] and by a new look at the
DM anisotropy due to Kaplan [9] and Shekhtman, Entin-
Wohlman, Aharony [10,11]. The main outcome of the lat-
ter work is sometimes referred to as the KSEA anisotropy
and is the subject of current experimental investigation in
the related context of helimagnetism [12].

Our purpose is to systematize the above developments
into a simple field theoretical framework that should

a e-mail: papanico@physics.uoc.gr

facilitate further work on this interesting subject. The rel-
evance of effective field theories became apparent through
standard hydrodynamic approaches [13,14] which even-
tually led to a successful description of the isotropic
Heisenberg antiferromagnet in terms of a relativistic non-
linear σ model [15,16]. A similar approach has been em-
ployed for the study of the dynamics of domain walls and
related topological magnetic solitons in conventional weak
ferromagnets [17]. This issue remains unexplored in the
context of cuprates, apparently due to the hidden nature
of weak ferromagnetism and a corresponding lack of a
complete field theoretical description.

In Section 2 we repeat the symmetry analysis to ob-
tain the most general spin Hamiltonian involving nearest-
neighbor (nn) interactions. Based on this Hamiltonian we
proceed with the derivation of an effective field theory
valid at low frequencies in two steps. First, in Section 3,
we derive a suitable extension of the 2D nonlinear σ model
which would be appropriate for the description of a single
CuO2 layer provided that the interlayer coupling could be
neglected. Second, in Section 4, we incorporate a weak
interlayer interaction to obtain the final effective the-
ory in the form of two coupled nonlinear σ models. The
main phenomenological implications are also worked out
in Section 4, including a discussion of the observed weak-
ferromagnetic [4] and spin-flop [5] transitions. Our conclu-
sions are summarized in Section 5 by listing those issues
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Fig. 1. The orthorhombic unit cell of La2CuO4 stripped of all
but the Cu atoms denoted by solid circles. Dashed lines join
nearest neighbors within each CuO2 plane and correspond to
the original tetragonal axes. The four inequivalent magnetic
sites are labeled by A,B, Γ and ∆.

that seem to deserve further attention. In the Appendix
we derive the most general next-nearest-neighbor (nnn)
in-plane interaction compatible with symmetry.

2 Symmetry constraints

The crystal structure of La2CuO4 has been discussed
on several occasions and the accumulated information is
freely used in this section [18,19]. The crystal undergoes a
structural phase transition from a tetragonal (I4/mmm)
phase at high temperatures to an orthorhombic (Bmab)
phase below 530 K. Throughout this paper we confine
attention to the low-temperature orthorhombic (LTO)
phase. The relevant space group Bmab is usually listed
as Cmca in standard tables of crystallography using a
slightly different choice of conventions. Our conventions
are illustrated in Figure 1 which depicts the unit cell dis-
playing only the magnetic sites; i.e., the positions of the
spin s = 1/2 Cu2+ ions. In a first approximation, the
magnetic ground state is such that spins at sites denoted
by A and ∆ point along the positive (negative) b-axis,

while spins at B and Γ point along the negative (posi-
tive) b-axis [20]. However, when anisotropies and a weak
interlayer coupling are taken into account, each spin suf-
fers a slight canting that leads to four inequivalent mag-
netic sites and a corresponding four-sublattice picture. In
the following, spin vectors are denoted by their standard
symbol S, or by A,B,Γ ,∆ when a distinction among the
four sublattices becomes necessary.

In order to list the symmetry elements of the space
group we begin with the most general primitive translation

T = αaea + βbeb + γcec, (1)

where ea, eb and ec are unit vectors along the crystal axes,
a = 5.35 Å, b = 5.40 Å and c = 13.15 Å are the lattice
constants, and (α, β, γ) is a set of integers that may also
be used to label the relative position of a unit cell through
the Cartesian coordinates x = αa, y = βb and z = γc. We
further consider the two fractional translations

τ =
1
2

(aea + cec), τ ′ =
1
2

(aea + beb), (2)

where τ is in itself a symmetry operation. The symmetry
group of the unit cell is then written symbolically as G =
G0 + τG0 where G0 contains the eight elements

E, I, σa, σ
′
b, σ
′
c, C2a, C

′
2b, C

′
2c. (3)

Here E denotes identity, I inversion about a Cu site,
σa, σb, σc reflections about the planes x = a/2, y = b/2,
z = c/2, and C2a, C2b, C2c 180◦ rotations around the axes
that emanate from the center of the unit cell as shown in
Figure 1. Primed elements in equation (3) must be com-
plemented by the special fractional translation τ ′ which is
not in itself a symmetry operation. Finally we note that all
elements of G can be generated from the fundamental set
(τ, I, σa, C′2c) by suitable group multiplications. The above
four elements have been used to derive the spin Hamil-
tonian described in the remainder of this paper without
presenting the detailed symmetry arguments.

We first discuss a 2D restriction that would be appro-
priate for the description of a single CuO2 layer if the
interlayer coupling could be neglected. The special sym-
metry element τ of equation (2) maps AB bonds in the
basal plane to Γ∆ bonds in the middle plane. Therefore
it is sufficient to consider for the moment only the basal
plane. Including all quadratic nn interactions within the
plane the Hamiltonian is written as a sum of four terms:

W = WE +WDM +WA +WZ. (4)

The first term

WE =
∑
〈kl〉

Jkl(Sk · Sl) (5)
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Fig. 2. Illustration of the distribution of the DM vectors ±D1

and ±D2, and of the symmetric exchange matrices K1 and K2,
on a portion of the basal plane. The spins A and B in a given
dimer are labeled by a pair of indices (α, β) that advance along
the orthorhombic axes a and b not shown in the figure.

contains the isotropic exchange interaction over nn in-
plane bonds denoted by 〈kl〉. Symmetry requires that

Jkl = J, for all in−plane nn bonds. (6)

The second term

WDM =
∑
〈kl〉

Dkl · (Sk × Sl) (7)

is the standard (antisymmetric) DM anisotropy [2,3]. The
vectors Dkl are restricted by symmetry to take only two
distinct values:

D1 = Dea +D′eb, D2 = Dea −D′eb, (8)

which are distributed over the 2D lattice as shown in
Figure 2 where a sign alternation ±D1 and ±D2 on oppo-
site bonds is also displayed. This alternation together with
the specific form of DM vectors (8) were derived by Coffey,
Bedell, and Trugman [7]. Actually the DM vectors given
in the above reference differ from those of equation (8)
by a 45◦ rotation, apparently because they were referred
to the original tetragonal axes. Since the latter axes are
not exactly orthogonal in the LTO phase, statement (8)
should be viewed as slightly more precise. The third term

WA =
1
2

∑
〈kl〉

∑
i,j

Kij
kl(S

i
kS

j
l + SjkS

i
l ) (9)

encompasses all “symmetric” exchange anisotropies over
nn in-plane bonds. Again the matrices Kkl are restricted
by symmetry to two possible values:

K1 =

Kaa Kab 0
Kab Kbb 0

0 0 Kcc

 ,

K2 =

 Kaa −Kab 0
−Kab Kbb 0

0 0 Kcc

 , (10)

which are distributed as shown in Figure 2. The above ma-
trices may be taken to be traceless (Kaa+Kbb+Kcc = 0)
because the isotropic component of the exchange inter-
action has already been accounted for by equation (5).
Finally the fourth term

WZ = −
∑
l

(H · Sl) (11)

is simply the Zeeman interaction produced by an external
field H.

The symmetry analysis was extended to include all
nnn in-plane interactions; namely, couplings along the di-
agonals of the Cu plaquettes which are parallel to the
orthorhombic a and b axes. The resulting additions to
the Hamiltonian are summarized in the Appendix. How-
ever, although we have kept track of the nnn interactions
throughout our analysis, the corresponding results will
not be included in the main text to keep the exposition
reasonably simple.

We next turn our attention to possible microscopic
mechanisms that produce the various anisotropies. A good
starting point is the KSEA Hamiltonian [11]

W =
∑
〈kl〉

[ (Jkl −
|Dkl|2
4Jkl

)(Sk · Sl) + Dkl · (Sk × Sl)

+
1

2Jkl
(Sk ·Dkl)(Dkl · Sl) ], (12)

obtained by carrying the perturbative treatment of spin-
orbit interaction to second order. The second-order terms
in equation (12) are usually neglected by comparison to
the linear DM anisotropy. However their effect can be sub-
tle noting that the total contribution from each specific
bond may be brought to a completely isotropic form by
rotating the spin operators Sk and Sl around the Dkl axis
with angles −θkl and θkl such that tan θkl = |Dkl|/2Jkl.
One would naively conclude that Hamiltonian (12) does
not predict spin ordering of any kind; in particular, weak
ferromagnetism. Nevertheless spin ordering may occur as
a result of frustration when the collective effect from all
bonds is taken into account [11].

It should be expected that the exchange anisotropy
abstracted from equation (12) is consistent with the sym-
metry statement (10). Indeed, taking into account that
Jkl = J for all in-plane bonds and the specific form
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of the DM vectors from equation (8), the (traceless) KSEA
anisotropy is found to be a special case of (10) with

Kaa =
2D2 −D′2

6J
, Kbb =

2D′2 −D2

6J
,

Kcc = −D
2 +D′2

6J
, Kab =

DD′

2J
· (13)

Of course, spin-orbit interaction is not the only source of
anisotropy and, in fact, Coulomb exchange produces an
Ising-like term [11,21] described by

Kaa =
1
3
K = Kbb, Kcc = −2

3
K, (14)

which should be added to the corresponding elements of
equation (13). Therefore we proceed with caution using
the most general anisotropy given by equation (10) and re-
turn to further discussion of the special cases (13) and (14)
in Section 3.

The remainder of this section is devoted to a brief ex-
planation of our main strategy. At this point we invoke
the classical approximation. The 2D dynamics will thus
be described by the Landau-Lifshitz equation [22] in the
form given by Gilbert [23]:

∂A
∂t

+ γ(A× ∂A
∂t

) = A× FA, FA = −∂W
∂A

,

∂B
∂t

+ γ(B× ∂B
∂t

) = B× FB, FB = −∂W
∂B

, (15)

where γ is a dissipation constant. The spin variables A
and B are treated as classical vectors of length s, and the
lattice indices (α, β) displayed in Figure 2 are suppressed
in equation (15) for notational convenience.

The suppression of indices is actually justified if one
wishes to study only the homogeneous spin dynamics in
the presence of a spatially uniform field H. Then spins as-
sume only two distinct values A and B, one for each sub-
lattice, and the effective fields FA and FB in equation (15)
may be derived from the much simpler Hamiltonian

WC = 4[J(A ·B) +D(AbBc −AcBb)
+KaaAaBa +KbbAbBb +KccAcBc]
−H · (A + B), (16)

where (Aa, Ab, Ac) and (Ba, Bb, Bc) are the Cartesian
components of the spin vectors A and B along the or-
thorhombic axes. A notable fact is that neither D′ nor
Kab enter equation (16) because their contributions av-
erage out of the effective fields. If we further restrict the
diagonal anisotropies to the Ising form (14), equation (16)
yields the unit-cell Hamiltonian employed by Thio et al.
to account for a wide range of experiments [4–6]. The sign
alternation of the DM vectors on opposite bonds [7] is cru-
cial for the description in terms of a unit-cell Hamiltonian
and was thus implicitly assumed in reference [4]. Lack of

sign alternation would lead to spiral magnetic order or
helimagnetism [12].

The information accumulated so far is employed in
Section 3 to study the 2D dynamics of a single layer. One
should recall that the dynamics of the middle plane is com-
pletely isomorphic and may be obtained by the simple sub-
stitution (A,B)→ (Γ ,∆). The complete 3D dynamics in-
cluding interlayer interactions will be studied in Section 4.

3 Dynamics of a single layer

The unit-cell Hamiltonian (16) may be analyzed through
the classical Landau-Lifshitz equations (15) to furnish
explicit predictions for the characteristic magnon fre-
quencies and the corresponding dynamic susceptibili-
ties, following the early treatment of orthoferrites by
Herrmann [24]. Considerable simplifications are effected
along the way by appealing to the phenomenological fact
that anisotropies and the applied field are much smaller
than the isotropic exchange constant:

D,K,H � J. (17)

Simply stated our task is to derive an effective low-
frequency dynamics in which the strong inequalities (17)
are taken into account from the outset. In fact, we aim
to go beyond the homogeneous dynamics to include spa-
tial variations within a complete continuum field theory
in the form of a nonlinear σ model. The actual deriva-
tion is a straightforward adaptation of a direct method
employed earlier for the study of an 1D model weak ferro-
magnet [25] and a 2D antiferromagnet [26]. We thus sup-
press the algebraic details and state the final result which
can be explained in a simple manner.

Rationalized space-time variables are defined from

η = αδ, ξ = βδ, τ = 2sδJt, (18)

where δ is a dimensionless scale whose significance will
be made precise as the argument progresses. The actual
distances along the a and b axes are then given by x =
ηa/δ and y = ξb/δ while frequency is measured in units
of 2sδJ . We also define rescaled parameters grouped into
two categories. The DM anisotropy and the applied field
are scaled linearly with δ:

d =
2D
δJ

, h =
H

2sδJ
, (19)

whereas diagonal anisotropies are scaled quadratically:

κa =
8Kaa

δ2J
, κb =

8Kbb

δ2J
, κc =

8Kcc

δ2J
· (20)

Note that the parametersD′ and Kab do not appear in the
above list because they eventually drop out of the effective
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low-frequency dynamics, for essentially the same reason
they do not appear in the unit-cell Hamiltonian (16).

Concerning the field variables a transparent formula-
tion is obtained in terms of the “magnetization” m and
the “staggered magnetization” n which are defined by

m =
1
2s

(A + B), n =
1
2s

(A−B), (21)

and satisfy the classical constraints m · n = 0 and m2 +
n2 = 1. The basis for the derivation of an effective field
theory is that the strong inequalities (17) imply |m| �
|n|. Indeed, a consistent low-frequency reduction of the
Landau-Lifshitz equation is obtained by treating m as a
quantity of order δ, while the staggered moment n and
the rescaled variables (19–21) are of order unity. Then, to
leading order, the classical constraints reduce to

m · n = 0, n2 = 1, (22)

and m may be expressed in terms of n through the
algebraic relation

m =
δ

4
[n× (ṅ + d− n× h)− (nη + nξ)], (23)

where d = dea, the dot denotes differentiation with re-
spect to τ , and subscripts differentiation with respect
to the spatial coordinates η and ξ. The first term in
equation (23) is of purely dynamical origin and vanishes
for static configurations. The second term is responsible
for the weak ferromagnetic moment induced by the DM
anisotropy, and the third term accounts for the moment
generated by an applied field. The last two terms ap-
pear to break parity and reflect a certain ambiguity in
the continuum limit of an antiferromagnet which is well
understood [25,26]. These terms do not contribute to the
ground state because they vanish for spatially uniform
configurations.

The main point is that the dynamical equations may
now be stated entirely in terms of the staggered moment
n which satisfies the nonlinear σ model

n× (f + λṅ) = 0, n2 = 1, (24)

where λ = 4sγ/δ is a rescaled dissipation constant,
and the effective field f may be derived from an action
principle:

f = −δA
δn

, A =
∫
L dηdξdτ, (25)

where A is the action and L the corresponding Lagrangian
density

L = L0 − V. (26)

Here L0 is the “free Lagrangian”

L0 =
1
2

(ṅ2 − n2
η − n2

ξ) + h·(n× ṅ) (27)

and V is the “potential”

V = (h× d) · n +
1
2

(n · h)2 +
1
2

(a2
1n

2
a + a2

2n
2
c), (28)

where (na, nb, nc) are the Cartesian components of n and

a2
1 = d2 + κb − κa, a2

2 = κb − κc, (29)

are the final effective anisotropy constants.
If the applied field were absent (h = 0) the derived field

theory would be relativistically invariant. The “velocity
of light” is equal to the magnon velocity in the corre-
sponding isotropic antiferromagnet and is scaled out of
equation (27) thanks to the use of rationalized units. Re-
calling that x = ηa/δ, y = ξb/δ, and τ = 2sδJ , the ac-
tual magnon velocities along the a and b directions are
Va = 2saJ and Vb = 2sbJ . The predicted slight anisotropy
Vb/Va = 1.01 cannot be discerned in current experiments
which yield an average spinwave velocity Vsw ≈ Va ≈ Vb ≈
850 meV Å for pure La2CuO4 samples [1]. Using an av-
erage lattice constant a ≈ b = 5.375 Å one may extract
a classical value for the exchange constant J = 158 meV
which differs from the usually accepted J = 135 meV by
the calculated quantum-renormalization factor 1.18.

We are now in a position to make contact with the var-
ious special limits of the exchange anisotropy discussed in
Section 2. The pure Ising anisotropy (14) leads to a1 = d
and a2

2 = 8K/δ2J which correspond to the minimal model
of Thio et al. [4]. In principle, the KSEA anisotropy (13)
could lead to a1 6= d. However an estimate of the DM
parameters D and D′ within a tight-binding model [11]
yields the near equality |D| ≈ |D′| which simplifies the
diagonal elements of equation (13) to an Ising-like form,
and thus a1 ≈ d, whereas the off-diagonal element Kab

does not appear in the effective theory. Another mecha-
nism for a1 6= d is provided by the diagonal nnn exchange
anisotropies (see the Appendix) but we do not have a way
to theoretically estimate those parameters. In short, de-
partures from the strict equality a1 = d are allowed by
symmetry but the near equality a1 ≈ d is likely a good as-
sumption. In any case, our theoretical calculations will be
carried out in terms of the three parameters (a1, a2, d) and
further discussion of this issue is postponed to Section 4.3.

Next we discuss the field-dependent terms in
equations (27, 28). We first note the well-known fact that
the last term in the free Lagrangian (27) breaks Lorentz in-
variance [17]. Incidentally, a mild breakdown of Lorentz in-
variance is also induced by the off-diagonal nnn exchange
anisotropy discussed in the Appendix. The potential (28)
contains two distinct contributions from the external field.
The term (n · h)2 is an easy-plane anisotropy due to the
tendency of the two spins in a given dimer to antialign
in a direction nearly perpendicular to the applied field.
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More subtle is the term (h× d) · n which couples the ex-
ternal field to the antisymmetric DM anisotropy. The ex-
istence of such a term was anticipated by Andreev and
Marchenko [27] in their phenomenological treatment of
conventional weak ferromagnets based on symmetry. Al-
though this term is often omitted in the literature [17], it
was shown to be important for a proper understanding of
domain-wall dynamics [25]. In fact, the present work will
provide ample evidence for the crucial importance of such
a term in every aspect of weak ferromagnetism.

Whereas the complete physical picture cannot be es-
tablished until we incorporate the interlayer coupling, in
Section 4, the remainder of this section is devoted to the
derivation of some basic consequences of the single-layer
dynamics. Applications carried out in this paper pertain
to homogeneous spin dynamics. One may then neglect spa-
tial gradients to write

m =
δ

4
[n× (ṅ + d− n× h)],

L0 =
1
2
ṅ2 + h · (n× ṅ),

V = (h× d) · n +
1
2

(n · h)2 +
1
2

(a2
1n

2
a + a2

2n
2
c), (30)

which describe the low-frequency dynamics associated
with the unit-cell Hamiltonian (16).

For our current demonstration we assume that the field
points along the c-axis (ha = 0 = hb, hc = h) and thus the
potential reduces to

V = hdnb +
1
2

[a2
1n

2
a + (a2

2 + h2)n2
c ], (31)

whose local minima are given by n = (0,∓1, 0) and the
corresponding magnetization is computed from the first
equation in (30) applied for static n; i.e., ṅ = 0. Hence
the two ground-state configurations are described by

n = ∓eb, m =
δ

4
(h± d)ec (32)

and are degenerate at zero field. For h > 0 the upper sign
yields the absolute ground state, and the lower sign corre-
sponds to a metastable local minimum with higher energy.
Equation (32) makes it explicit that a weak ferromagnetic
moment develops along the c-axis even in the absence of
an applied field.

The computation of the spectrum of normal frequen-
cies is now straightforward. In terms of the standard
angular variables

na + inb = sinΘ eiΦ, nc = cosΘ, (33)

the free Lagrangian is written as

L0 =
1
2

(Θ̇2 + sin2Θ Φ̇2) + h sin2Θ Φ̇, (34)

and a corresponding angular parametrization of the poten-
tial is obtained simply by inserting equation (33) in (31).
The ground-state configurations are then given byΘ = π

2 ,
Φ = ∓π2 , while small fluctuations are accounted for by
making the replacements Θ = π

2 − θ, Φ = ∓(π2 − φ) and
keeping terms that are at most quadratic in θ and φ. Also
omitting a trivial additive constant and total derivatives
one finds that

L = L0 − V ≈
1
2

(φ̇2 + θ̇2)− 1
2

(ω2
1±φ

2 + ω2
2±θ

2), (35)

where

ω2
1± = a2

1 ± hd, ω2
2± = a2

2 ± hd+ h2 (36)

are the (squared) characteristic magnon frequencies for in-
plane and out-of-plane fluctuations, respectively. The cal-
culated magnon gaps will be discussed further in Section 4
after including the interlayer coupling which mixes the two
types of ground state.

This section is completed with a comment concerning
the choice of the scale parameter δ in equations (19–21).
Although δ plays an important role in ascertaining the rel-
ative significance of the various terms that arise during the
low-frequency reduction of the Landau-Lifshitz equations,
consistency requires that all physical predictions be inde-
pendent of δ. The magnon gaps (36) provide a good illus-
tration of this point by recalling that the unit of frequency
is 2sδJ . When the right-hand sides of equations (36) are
multiplied by (2sδJ)2 the resulting expressions are indeed
independent of δ and contain only the original microscopic
parameters in suitable combinations. But one may exploit
δ to choose more convenient rationalized units as discussed
in Section 4.

4 Interlayer coupling

Although interlayer interactions are expected to be weak,
they are important for a proper understanding of spin dy-
namics in La2CuO4. We have thus extended the symmetry
analysis of Section 2 to include nn interlayer couplings on
bonds that are parallel to either the ac or the bc plane.
For each Cu atom there exist eight out-of-plane neighbors,
four in the plane above and another four in the plane be-
low. Symmetry requires that the isotropic exchange inter-
action is described by an exchange constant J1 for bonds
that are parallel to the ac plane, and a second exchange
constant J2 for bonds parallel to the bc plane. These two
constants would be equal in the tetragonal (I4/mmm)
phase but are different in the LTO phase due to the or-
thorhombic distortion.

The exchange constants are expected to individually
satisfy the strong inequalities

J1, J2 � J, (37)
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in view of the fact that the length of out-of-plane nn
bonds is significantly larger than the length of in-plane nn
bonds. It is thus reasonable to assume that out-of-plane
anisotropies (symmetric or antisymmetric) can be safely
ignored because they are expected to be even weaker. In
fact, we have worked out the form of all such anisotropies
compatible with symmetry to convince ourselves that they
do not bring in potentially new elements.

Therefore the three-dimensional (3D) unit-cell Hamil-
tonian can be written as

W 3D
C = WC(A,B) +WC(Γ ,∆) +Wint(A,B,Γ ,∆),

(38)

where the first term is the 2D unit-cell Hamiltonian (16),
the second term is obtained by the simple substitution
(A,B) → (Γ,∆), and Wint contains the isotropic inter-
layer interactions. Simple inspection of Figure 1 leads to

Wint = 4J1(A · Γ + B ·∆) + 4J2(A ·∆+ B · Γ ). (39)

This form is somewhat more involved than the one em-
ployed by Thio et al. [5] but will eventually lead to the
same physical picture.

We must now reformulate the strategy of Section 3 by
introducing two pairs of variables

m1 =
1
2s

(A + B), n1 =
1
2s

(A−B),

m2 =
1
2s

(Γ +∆), n2 =
1
2s

(Γ −∆), (40)

which would satisfy two identical copies of the 2D non-
linear σ model derived in Section 3 if the interlayer
interaction (39) were neglected. The latter induces a cou-
pling between the two copies which is especially simple
in view of the strong inequalities (37). The magnetiza-
tions m1 and m2 are not directly affected by the interlayer
coupling; i.e.,

m1 =
δ

4
[ n1 × (ṅ1 + d− n1 × h) ],

m2 =
δ

4
[ n2 × (ṅ2 + d− n2 × h) ], (41)

but the staggered moments n1 and n2 satisfy a coupled
dynamics described by the total Lagrangian

L = L0 − V,
L0 = L01 + L02, V = V1 + V2 + V12, (42)

where L01 and L02 are two identical copies of the free
Lagrangian of equation (30) applied for n = n1 and

∆∆∆ ΓΓ

BA

b

n2
m2

m1

b

c

n1

c

Fig. 3. Schematic representation of the ground-state configu-
ration given by equation (44) with the upper sign. A second
(degenerate) ground state is obtained by reversing the signs
of all spins. The canting angle and the corresponding magni-
tude of m1 and m2 are greatly exaggerated for purposes of
illustration.

n = n2, respectively, V1 and V2 are similar copies of the
2D potential, and

V12 = ρ2(n1 · n2), ρ2 =
8(J1 − J2)

δ2J
, (43)

is an effective interlayer potential.
The further inequality J1 > J2 implied by the notation

of equation (43) is simply an assumption consistent with
phenomenology. To illustrate this assumption we consider
the ground-state configuration(s) at zero external field.
In this special case the absolute minimum of the total
potential V of equation (42) is achieved when each term
V1, V2 or V12 assumes its least possible value. Specifically,
n1 = −n2 and

n1 = ∓eb, m1 = ± δ
4
dec,

n2 = ±eb, m2 = ∓ δ
4
dec. (44)

The spin configuration that corresponds to the upper sign
is depicted in Figure 3, and the second ground state is
obtained by reversing the sign of all spins and carries the
same energy. In either case, the average total magneti-
zation m = 1

2 (m1 + m2) vanishes and thus explains the
term “covert weak ferromagnet” often employed to de-
scribe La2CuO4. More involved spin configurations arise
in the presence of external fields and are described in the
following.

The general description of the effective 3D dynamics
is completed with an important comment. The assumed
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Fig. 4. The T = 0 phase diagram for a field h parallel to the
c-axis. The true critical boundaries are depicted by solid lines,
the limit of local stability of Phase I is shown by a dashed
line, and the same limit of Phase III by a dotted line. The
WF transition in La2CuO4 is described by the first-order I: III
transition.

strong inequalities (37) also imply that gradient terms of
any kind produce negligible corrections to the effective in-
terlayer coupling. Therefore the homogeneous 3D dynam-
ics described by equations (41–43) may be generalized to a
complete continuum field theory simply by extending the
free Lagrangians L01 and L02 to include 2D spatial gra-
dients according to equation (27) applied for n = n1 and
n = n2, respectively. The resulting field theory is essen-
tially 2D and the only trace of 3D dynamics is the bilayer
coupling (43).

4.1 Weak-ferromagnetic transition

We return to the problem posed in the concluding para-
graphs of Section 3 and now address it within its proper
3D context. When a field of strength h is applied along
the c-axis the total bilayer potential is given by

V = ρ2(n1 · n2) + hd(n1b + n2b)

+
1
2

[a2
1(n2

1a + n2
2a) + (a2

2 + h2)(n2
1c + n2

2c)], (45)

where n1 = (n1a, n1b, n1c) and n2 = (n2a, n2b, n2c) are
the two order parameters expressed in Cartesian compo-
nents. Simple inspection of the potential, taking into ac-
count that a1 < a2, suggests that its minima are such
that n1c = 0 = n2c. One may then parametrize the re-
maining components as (n1a, n1b) = (cosΦ1, sinΦ1) and
(n2a, n2b) = (cosΦ2, sinΦ2) to obtain

V = ρ2 cos(Φ1 − Φ2) + hd(sinΦ1 + sinΦ2)

+
1
2
a2

1(cos2 Φ1 + cos2 Φ2). (46)

This reduced potential reveals an interesting formal anal-
ogy to the case of an easy-axis antiferromagnet with

n1
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m 2m 1
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m 2m 1

m 1

m 2
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b b
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Fig. 5. Representative ground-state configurations in Phases
I, II, and III of the T = 0 phase diagram of Figure 4. In all
three cases the net magnetization m = 1

2
(m1 + m2) points

along the field direction (c-axis).

exchange constant ρ2, anisotropy a2
1, and an effective

field of strength hd applied along the easy b-axis; even
though the actual field points along the c-axis. There-
fore the search for the minima of (46) follows the fa-
miliar pattern of the conventional spin-flop transition in
an easy-axis classical antiferromagnet, with due attention
to the fact that the relevant order parameters are now
the staggered moments and not the actual spins. The re-
sults of this straightforward minimization problem can be
simply stated by introducing the temporary notational
abbreviations

X =
hd

ρ2
, Y =

a2
1

ρ2
, (47)

and are summarized in the T = 0 phase diagram
of Figure 4 supplemented by the typical configurations
within each phase illustrated in Figure 5.

At zero field (X = 0) the ground state is given by
equation (44) and exhibits twofold degeneracy. It is suf-
ficient to consider the configuration defined by the upper
sign and follow its evolution at nonvanishing field h:

n1 = −eb, m1 = δ
4 (h+ d)ec,

n2 = +eb, m2 = δ
4 (h− d)ec,

m = 1
2 (m1 + m2) = δ

4hec, (48)
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which is depicted in entry I of Figure 5 and exhibits a net
moment m along the c-axis whose magnitude increases
linearly with the applied field. This configuration remains
locally stable until the field crosses the boundary

Y =
√

1 +X2 − 1 (49)

shown by a dashed line in the phase diagram of Figure 4.
However this state becomes metastable at an earlier stage
and the true critical boundary of Phase I consists of two
branches:

Y = 1−
√

1−X2, X < 1, (50)

and

X = 1, Y > 1, (51)

which are drawn by solid lines in Figure 4 and join a third
critical line

X + Y = 2, Y < 1, (52)

at the “tricritical” point X = 1 = Y .
For anisotropies below the tricritical point (Y < 1) the

system would undergo a first-order transition at the crit-
ical line (50) to enter Phase II characterized by a flopped
configuration of the staggered moments n1 and n2 but
magnetizations m1 and m2 that are both aligned along
the c-axis. With further increase of the applied field be-
yond the critical boundary (52) a second-order transition
occurs and the system enters Phase III in which both stag-
gered moments are parallel to the (negative) b-axis.

The parameters of La2CuO4 favor the value Y ≈ 2
and hence the relevant weak-ferromagnetic (WF) transi-
tion is the direct I: III transition that occurs at the critical
line (51), or at a critical field h = h0 given by

h0 = ρ2/d. (53)

The WF transition is clearly first order because the bound-
ary of local stability of Phase I shown by a dashed line
in Figure 4 extends well to the right of the true critical
boundary (51). Similarly the boundary of local stability of
Phase III shown by a dotted line extends well to the left of
the true critical boundary. One may express equation (53)
in terms of the original variables to write

mH0 = s2J⊥, J⊥ = 4(J1 − J2), (54)

where H0 is the critical field, m is the weak moment per
Cu atom at zero field, s = 1/2 is the spin of a Cu2+

ion, and J⊥ is an effective interlayer exchange constant.
With this identification of J⊥ equation (54) coincides
with the original estimate of Thio et al. [4]. In oxygen-
doped La2CuO4+y samples of reduced Néel temperature

0 5 10 15 20 25
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m
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Β
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Fig. 6. Net magnetization induced by an applied field. The
dashed line corresponds to a field along the c-axis and demon-
strates the WF transition at the critical field H0 = 5 T. The
solid line corresponds to a field along the b-axis and displays
discontinuities at the critical fields H1 = 10 T and H2 = 20 T
characteristic of the SF transition. In either case the net mag-
netization points along the direction of the applied field.

(TN ∼ 240 K) the measured critical field is H0 = 5 T,
m = 2.1×10−3µB, and thus J⊥ is estimated to be 2.5 µ eV.

The description of the general features of the WF tran-
sition is completed by quoting the explicit ground-state
configuration in Phase III:

n1 = −eb = n2,

m = m1 = m2 =
δ

4
(d+ h)ec, (55)

where the net moment m again increases linearly with h.
The results for the net magnetization in Phases I and III,
given by equations (48, 55), are shown by a dashed line in
Figure 6 which exhibits a sudden jump at the critical field
H0 = 5 T due to the first-order nature of the WF tran-
sition. One should stress that this calculation is strictly
valid at T = 0; the magnetization jump is increasingly
smoothed out with rising temperature [4,5].

It is now interesting to recalculate the magnon gaps in
the presence of the interlayer coupling. If we parametrize
n1 and n2 by two replicas of the angular variables (33) the
ground-state configuration in Phase I is given by (Θ1 =
π
2 , Φ1 = −π2 ) and (Θ2 = π

2 , Φ2 = π
2 ). Small fluctuations

are then studied by introducing the variables (Θ1 = π
2 −

θ1, Φ1 = −π2 + φ1) and (Θ2 = π
2 − θ2, Φ2 = π

2 − φ2) in the
complete Lagrangian (42) and keeping terms that are at
most quadratic:

L ≈ 1
2

(φ̇2
1 + φ̇2

2 + θ̇2
1 + θ̇2

2)− ρ2(φ1φ2 + θ1θ2)

−1
2

(c+1 φ
2
1 + c−1 φ

2
2 + c+2 θ

2
1 + c−2 θ

2
2),

c±1 = a2
1 ± hd+ ρ2, c±2 = a2

2 ± hd+ h2 + ρ2.

(56)
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Standard diagonalization of this quadratic form yields
the four magnon gaps

Ω2
1± = a2

1 + ρ2 ±
√
h2d2 + ρ4,

Ω2
2± = a2

2 + ρ2 ±
√
h2d2 + ρ4 + h2, (57)

which reduce to the gaps of equation (36) at zero
interlayer coupling (ρ2 = 0). The zero-field limit of
equation (57) is also interesting and leads to

Ω1− = a1, Ω2− = a2,

Ω1+ =
√
a2

1 + 2ρ2, Ω2+ =
√
a2

2 + 2ρ2. (58)

The “acoustical” gaps 1− and 2− do not depend on the
interlayer coupling and correspond to the usual antiferro-
magnetic (AF) modes for in-plane and out-of-plane fluc-
tuations, respectively. The “optical” gaps 1+ and 2+ are
sensitive to the interlayer coupling and may be said to cor-
respond to exchange (E) modes, in analogy with a similar
distinction made within a proper four-sublattice formu-
lation of orthoferrites [24]. In the latter case, AF and E
modes are widely separated due to a strong interlayer ex-
change interaction that is comparable to the intralayer
one. In contrast, a close proximity of these two types of
modes should be expected in La2CuO4 because 2ρ2 ≈ a2

1.
The decoupling of AF and E modes suggested by

equation (58) no longer holds in the presence of an ap-
plied field, as is apparent in equation (57). In this respect,
it is also useful to follow the gaps beyond the WF transi-
tion. In Phase III the ground-state configuration is given
by Θ1 = π

2 = Θ2, Φ1 = −π2 = Φ2 and small fluctua-
tions lead to a quadratic Lagrangian similar to (56). The
corresponding magnon gaps are found to be

Ω2
1− = a2

1 + hd− 2ρ2,

Ω2
2− = a2

2 + hd+ h2 − 2ρ2,

Ω2
1+ = a2

1 + hd,

Ω2
2+ = a2

2 + hd+ h2, (59)

where the role of acoustical and optical modes is clearly
interchanged. To be sure, equation (57) is valid for h < h0

and equation (59) for h > h0. The spectrum exhibits a
discontinuity at h = h0 because of the first-order nature
of the WF transition.

4.2 Spin-flop transition

The case of a field applied along some direction in the
basal plane is equally interesting. In particular, when the
field is precisely aligned with the b-axis, an unusual spin-
flop (SF) transition is reflected in magnetoresistance mea-
surements [5]. An important element in the corresponding
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Fig. 7. Representative ground-state configurations in the three
distinct field regions that characterize the SF transition. In all
three cases the net magnetization m = 1

2 (m1 + m2) points in
the direction of the applied field (b-axis).

theoretical analysis is that the observed in-plane magnon
gap is smaller than the out-of-plane gap (a1 < a2).

The total bilayer potential in a field h = (0, h, 0) is
given by

V = ρ2(n1 · n2)− hd(n1c + n2c) +
1
2
h2(n2

1b + n2
2b)

+
1
2

[a2
1(n2

1a + n2
2a) + a2

2(n2
1c + n2

2c)] (60)

and its minimization is again achieved analytically. The
two unit vectors n1 and n2 are parametrized in terms of
two sets of angular variables (Θ1, Φ1) and (Θ2, Φ2). One
can then show that the minima of (60) are such that

Θ1 = Θ2 = Θ (61)

for any value of the applied field. However the azimuthal
angles Φ1 and Φ2 display different behavior in three dis-
tinct field regions separated by two critical fields:

h1 = a1, h2 =
1
d

(a2
2 + 2ρ2 − a2

1). (62)

For h < h1 the ground-state configuration is illustrated
in the first entry of Figure 7. The staggered moments are
both contained in the bc plane and cant toward the c-axis
with which they form an angle Θ given by

cosΘ =
hd

a2
2 + 2ρ2 − h2

· (63)
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Accordingly the net magnetization points along the direc-
tion of the applied field, namely

m =
1
2

(m1 + m2) =
δ

4
(d+ h cosΘ) cosΘ eb. (64)

For h1 < h < h2 the staggered moments flop into the ac
plane and form an angle with the c-axis given by

cosΘ =
hd

a2
2 + 2ρ2 − a2

1

, (65)

while the corresponding net magnetization is

m = m1 = m2 =
δ

4
(h+ d cosΘ)eb. (66)

Finally, for h > h2, both staggered moments are aligned
with the c-axis and the net magnetization

m = m1 = m2 =
δ

4
(d+ h)eb (67)

continues to point along the field direction. This picture
should be completed with the remark that the calculated
sharp SF transition at the critical fields h1 and h2 is
smoothed out when the direction of the applied field de-
parts from the b-axis.

The preceding description of the SF transition con-
firms the theoretical analysis of Thio et al. which was
in turn shown to be consistent with experiment [5]. In
particular, the critical fields (64) agree with those of
reference [5] if we adopt the minimal choice a1 = d and
identify the effective interlayer exchange constant J⊥ as
in equation (54). The net magnetization calculated from
equations (64, 66, 67) is depicted by a solid line in Figure 6
and displays characteristic discontinuities at the observed
critical fields H1 = 10 T and H2 = 20 T. A minor differ-
ence in the overall scale of Figure 6 with the corresponding
result of reference [5] is apparently due to a slightly dif-
ferent choice of parameters, as discussed in the following
subsection.

4.3 Rationalized units and constants

Our purpose here is to demonstrate how to efficiently use
the rationalized formulas derived throughout this paper,
rather than to analyze in depth the available experimen-
tal data. Such an analysis is complicated by the fact that
actual experiments have been performed on samples with
varying oxygen doping. Pure La2CuO4 samples have been
available [1,28] and exhibit magnetic order below the Néel
temperature TN = 325 K. However the most complete
set of magnetic measurements was obtained on oxygen-
doped La2CuO4+y with reduced Néel temperature [4,5].
Hence our demonstration will be based on the latter mea-
surements but could be extended to pure samples in a
straightforward manner.

We begin with a parameter-free theoretical predic-
tion based on the fact that the first critical field in
equation (62) and the zero-field 1− gap in equation (58)
are both equal to a1. In physical units this equality reads
gmµBH1 = Ω1− where gm = 2.2 is the gyromagnetic ratio
and µB the Bohr magneton. Hence, if we use the measured
critical field H1 = 10.5± 1 T, the predicted in-plane gap
Ω1− = 1.33 ± 0.12 meV is consistent with the measured
1.1 ± 0.3 meV. For simplicity we adopt in the following
the rounded critical field value H1 = 10 T which leads
to Ω1− = 1.27 meV. Now the theoretical zero-field weak
moment per Cu atom is m = δd/4 or, in physical units,
m = sgmµBδd/4 which should be compared to a measured
value 2.2× 10−3µB to yield δd = 8× 10−3. This is an es-
timate of the DM anisotropy recalling that δd = 2D/J .
However a more convenient framework is obtained by ex-
ploiting the scale parameter δ to define rationalized units
such that d ≡ 1, and thus δ = 8 × 10−3, as anticipated
by the discussion of Section 3. For the moment we restrict
attention to the minimal model for which a1 = d ≡ 1.
Hence the theoretical critical field h1 = a1 = 1 sets the
rationalized field unit equal to the measured H1 = 10 T,
and the theoretical in-plane gap Ω1− = a1 = 1 sets the
unit of frequency at 1.27 meV. Then the measured criti-
cal field for the WF transition H0 = 5 T is translated into
h0 = 1/2 rationalized units and thus equation (53) reads
h0 = ρ2/d = ρ2 = 1/2 which provides a rationalized es-
timate of the interlayer coupling. Finally we consider the
theoretical critical field h2 of equation (62) which may
now be applied with a1 = d = 1 and 2ρ2 = 1 to yield
h2 = a2

2 in rationalized units or H2 = 10a2
2 T in physical

units. Comparing this prediction to the measured critical
field H2 = 20 T we find that a2 =

√
2. To summarize,

all theoretical formulas may be applied with rationalized
parameters

δ = 8× 10−3; a1 = d ≡ 1, a2 =
√

2, ρ2 =
1
2
, (68)

supplemented by the stipulation that the physical unit
for frequency be 1.27 meV, for field 10 T, and for
magnetization sgmµB = 1.1µB.

The predicted values for the acoustical gaps Ω1− =
1.27a1 = 1.27 meV and Ω2− = 1.27a2 = 1.8 meV are
marginally consistent with the observed 1.1±0.3 meV and
2.5± 0.5 meV. In fact, full consistency would be restored
if we had included error bars in our analysis [5] instead of
the conveniently rounded input values for the critical fields
and the magnetization actually used in our demonstration.
Furthermore the optical gaps of equation (58) are now
predicted to be Ω1+ = 1.27

√
a2

1 + 2ρ2 = 1.8 meV and
Ω2+ = 1.27

√
a2

2 + 2ρ2 = 2.2 meV. We do not know of
an experimental determination of the optical gaps. Thus
we merely note the predicted close proximity of acoustical
and optical gaps, as anticipated in Section 4.1.

Since the unit of frequency is equal to 2sδJ = δJ =
1.27 meV, the exchange constant is predicted to be
J = 1.27/δ = 158 meV. Curiously, this classical value
of the exchange constant is the same with the one ob-
tained in Section 3 in relation to the spinwave velocity
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850 meV Å observed on pure (TN = 325 K) samples. But
the spinwave velocity on oxygen-doped samples is typi-
cally lower (∼ 700 meV Å) and thus the currently pre-
dicted classical J is somewhat uncomfortably high. One
would think that such a discrepancy can be averted by
resorting to a nonminimal model with a1 6= d. Interest-
ingly, a more realistic value of J can thus be obtained
but only at the expense of further deterioration (lower-
ing) of the prediction for the out-of-plane acoustical gap
Ω2− = 1.8 meV discussed in the preceding paragraph; and
vice versa. Putting it differently, current data do not indi-
cate departure from the minimal model a1 = d but are not
sufficiently accurate to establish a strict or near equality.

5 Conclusion

While the phenomenological picture derived by Thio
et al. [4–6] is confirmed by the present analysis, some new
elements have emerged that may deserve closer attention:

The structure of the magnon gaps is more involved
than normally assumed because of the underlying four-
sublattice magnetic ground state. The calculated acous-
tical and optical gaps are not widely separated and hy-
bridization takes place in the presence of external fields.
Therefore study of the field-dependence of the magnon
gaps may lead to further tests of the derived picture.

The description of the isotropic 2D antiferromagnet
in terms of a relativistic nonlinear σ model has already
provided interesting results [15,16] but the presence of
anisotropies and an interlayer coupling are clearly impor-
tant for a more detailed understanding of the magnetic
structure of La2CuO4. Suffice it to say that the existence
of a finite Néel temperature (TN = 325 K) is precisely
due to such perturbations. Hence it is conceivable that
the field theoretical framework discussed here may help
to address some of the remaining questions [28].

The covert nature of weak ferromagnetism in La2CuO4

makes it difficult to directly observe macroscopic magnetic
domains. Nevertheless, even on structurally pure samples,
cooling below TN should produce numerous magnetic do-
mains and antidomains separated by domain walls that
are invisible because the average magnetization vanishes
at zero external field. When a field is applied in a direction
perpendicular to the CuO2 planes domain walls evolve
into magnetic stripes that exhibit enhanced magnetization
over a region of finite width and could thus become vis-
ible. Static magnetic stripes are stable for field strengths
smaller than the critical value H0 required to induce the
WF transition because of the restoring force supplied by
the antiferromagnetic interlayer coupling. When the field
exceeds H0 stripes are rendered unstable and begin to ex-
pand steadily in both directions, thus providing a detailed
mechanism for the observed first-order WF transition.

The preceding qualitative picture may be put on a firm
quantitative basis using the derived continuum field the-
ory, as we hope to demonstrate in a future publication.
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Appendix A: nnn interactions

Here we consider the modifications of the 2D Hamiltonian
of Section 2 that result from spin interactions along the
diagonals of the Cu plaquettes. Symmetry precludes the
existence of antisymmetric DM anisotropies on such bonds
and all nnn contributions to the Hamiltonian may be cast
in the form

Wnnn =
1
2

∑
〈〈kl〉〉

∑
i,j

Gijkl(S
i
kS

j
l + SjkS

i
l ) (A.1)

where 〈〈kl〉〉 denotes a nnn bond and the symmetric ma-
trices Gkl = (Gijkl) are not assumed to be traceless. The
possible values of Gkl are again restricted by symmetry as
shown in Figure 8.

Thus A spins interact with their A neighbors through
the exchange matrices

G1 =

G1aa 0 0
0 G1bb G1bc

0 G1bc G1cc

 ,

G2 =

G2aa 0 0
0 G2bb G2bc

0 G2bc G2cc

 , (A.2)

along the a and b direction, respectively, whereas B spins
interact with exchange matrices

G′1 =

G1aa 0 0
0 G1bb −G1bc

0 −G1bc G1cc

 ,

G′2 =

G2aa 0 0
0 G2bb −G2bc

0 −G2bc G2cc

 , (A.3)

which are related to G1 and G2. A corollary of these sym-
metry relations is that the isotropic components of nnn
exchange couplings, given by the traces of the above ma-
trices, are characterized by two exchange constants which
are generally different along the a and b directions but the
same for AA and BB bonds.

The corresponding modifications of the effective low-
frequency dynamics may be briefly summarized as follows.
The traces of the above matrices introduce an overall addi-
tive renormalization of the isotropic exchange constant J .
Similarly the contributions from the diagonal anisotropies
submerge with the anisotropy constants a1 and a2 already
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Fig. 8. Illustration of the distribution of the matrices G and
G′ given in the Appendix. These symmetric matrices describe
nnn exchange interactions along the diagonals of the Cu pla-
quettes which are parallel to the a- and b-axes. The remaining
conventions are those of Figure 2.

discussed in the main text. The only new parameter is then
introduced by the off-diagonal anisotropy, namely

g =
G1bc +G2bc

δJ
, G = g(nceb + nbec), (A.4)

where we have also defined a vector G that depends on
the staggered moment but plays a role similar to the DM
vector d = dea. Then equations (30) generalize to

m =
δ

4
[n× (ṅ + d + n×G− n× h)],

L0 =
1
2
ṅ2 +

3
2
g(n2

b − n2
c)ṅa + h · (n× ṅ),

V = (h× d) · n + g [hcnb + hbnc − 2(n · h)nbnc]

+
1
2

(n · h)2 +
1
2

(a2
1n

2
a + a2

2n
2
c) + 2g2n2

bn
2
c , (A.5)

which were actually used throughout our analysis. But the
results presented in the main text were restricted to g = 0
mainly because the qualitative picture remains intact and
current experimental data are not sufficiently accurate or
detailed to discern a nonvanishing g.
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